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Abstract

A reduced-order model is derived for electroosmotic flows in a microchannel of nonuniform cross-section. The model is constructed
based on the Karhunen–Loève Galerkin (KLG) procedure which can reduce nonlinear partial differential equations to sets of minimal
number of ordinary differential equations. The reduced-order model of the present investigation is carefully constructed such that it is not
necessary to re-evaluate any coefficient of the model even though the inhomogeneous zeta potential f(x) and the dielectric constant e
vary. This feature reduces the computational time greatly when employed in the estimation and control of electroosmotic flows, where
repeated solution of governing equations is required. Using the present reduced-order model, a practical method is devised to estimate
inhomogeneous zeta potential f(x) from velocity measurements of the electroosmotic flow in the microchannel. The proposed method is
found to estimate f(x) with reasonable accuracy even using noisy velocity measurements.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Microfluidic devices and systems find applications in
inkjet printing, blood analysis, biochemical detection,
chemical synthesis, drug screening and delivery, protein
analysis, DNA sequencing and so on [1–3]. In these devices
and systems the target chemical species are delivered by
activating electroosmotic flow. Electroosmotic flow is gen-
erated when an electric field is imposed through an ionic
solution parallel to the charged surfaces of a capillary [4].
The movement of ions in the electric double layer, caused
by the external electric field, acts as a driving force of the
electroosmotic flows.

Electroosmotic flows depend on the zeta potential, which
varies with solution pH, ionic strength and solute molecules
adsorbed into the walls. Electrochemical reactions, which
must occur at electrodes in order to impose an electric field
in solution, incurs metallic ion injection, water electrolysis
and the variation of pH. These adverse effects may influence
the zeta potential distribution along the channel wall. Since
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the zeta potential f is a crucial factor influencing the electro-
osmotic flows, it is imperative to determine accurate values
of f before guaranteeing a secure operation of the system.
Inhomogeneous zeta potential occurs due to several rea-
sons. The surface heterogeneity is introduced intentionally
by chemical surface modification to induce vortex or sec-
ondary flow. Or unwanted adhesion of DNA or protein
to the channel wall causes the nonuniform zeta potential
along the channel in various lab-chips. Considering the fact
that f distribution may vary during the operation of the
devices it is necessary to perform a real-time estimation of
f(x) for the control of such devices. Because estimation
and control of a system require repeated computation of
governing equations, one of the most important prerequi-
sites for the estimation and control of these microfluidic
devices is appropriate dynamic modeling of the system
which allows real-time simulation as well as accurate predic-
tion. In the present investigation we employ the Karhunen–
Loève Galerkin procedure (KLG procedure) to derive a
reduced-order model for electroosmotic flows in micro-
channels. The Karhunen–Loève Galerkin procedure is a
type of Galerkin methods, which employs the empirical
eigenfunctions of the Karhunen–Loève decomposition as
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basis functions [5–8]. Employing the empirical eigenfunc-
tion of the Karhunen–Loève decomposition as basis func-
tions of a Galerkin procedure, one can reduce the given
partial differential equations to a minimal set of ordinary
differential equations. Then, sophisticated control and esti-
mation techniques can be applied rigorously without undue
mathematical and computational complexities to this small
set of ordinary differential equations [9,10]. Recently the
KLG procedure has been applied successfully to the opti-
mal feedback control of the Rayleigh–Bénard convection
whose governing equation consist of the Navier–Stokes
equation and the heat convection equation [11,12].

However, there are two significant obstacles to the
straightforward application of the KLG procedure to the
electroomotic flows. One obstacle is the steep profiles of
electric potential and velocity near the walls. The KLG pro-
cedure usually yields satisfactory results when applied to the
modelling of fields with smooth variation. But fields with
steep gradient are not easily resolved by empirical eigen-
function. The other obstacle is the exponential dependence
of the charge density on the electric potential. The body
force term of the Navier–Stokes equation for eletroosmotic
flows consists of net charge density multiplied by the electric
potential gradient. The governing equation for the electric
potential is the Poisson–Boltzmann equation [4], which also
has the exponential of electric potential as a source term.
Therefore, the electric potential field must be reconstructed
using the relevant empirical eigenfunctions before perform-
ing the projection of the exponential terms into the basis
space when simulating the flow field using a Galerkin
method. This point will be expounded further in a later sec-
tion. If the electric potential changes due to the variation of
the zeta potential or the dielectric constant, the repeated
reconstruction of the electric potential and evaluation of
the inner product cause significant consumption of com-
puter time especially in the parameter estimation procedure
or modern control scheme. In the present investigation,
these difficulties are circumvented by representing the elec-
tric potential as a sum of the boundary function, which is
the analytic solution of one-dimensional Poisson–Boltz-
mann equation, and a perturbation function.

To demonstrate the efficiency and accuracy of the
derived reduced-order model, it is applied to estimate the
spatially inhomogeneous zeta potential using velocity mea-
surements of electroosmotic flow in a microchannel. This is
an inverse problem of finding the cause from a known
result. The solution of inverse problems is not straightfor-
ward due to their ill-posedness. Namely, small perturbation
in the observed function may result in large changes in the
corresponding solution [13]. One powerful method of solv-
ing inverse problems, which alleviates the difficulties asso-
ciated with the ill-posed nature, is to convert them into
minimization problems of a performance function using
the conjugate gradient method [14]. The performance func-
tion is usually posed by the sum of square residuals
between calculated and observed velocity at measurement
locations. While performing the conjugate gradient itera-
tion to minimize the performance function, it is necessary
to solve governing equations repeatedly. Thus, the employ-
ment of the reduced-order model instead of the partial dif-
ferential functions will facillitate the estimation procedure
significantly.

2. The Karhunen–Loève decomposition

As a means of explaining the Karhunen–Loève decom-
position we select N arbitrary irregularly shaped functions
with n ¼ 1; 2; . . . ;N . From now on, we call the irregular
shapes of these functions {vn} ‘snapshots’. The issue is
how to obtain the most typical or characteristic structure
/(x) among these snapshots {vn}. It can be shown that
the required function /(x) can be found by solving the fol-
lowing eigenvalue problem of the integral equation (1) [15]:Z

X
Kðx; x0Þ/ðx0Þdx0 ¼ k/ðxÞ; ð1Þ

where K(x,x0) is the two point correlation function defined
as

Kðx; x0Þ ¼ hvnðxÞvnðx0Þi ¼
1

N

XN

n¼1

vnðxÞvT
n ðx0Þ: ð2Þ

Usually this kind of integral equation can be solved by
means of Schmidt–Hilbert technique [16].

Let us express the eigenvalues, k1 > k2 > � � � > kN and the
corresponding eigenfunctions /1;/2; . . . ;/N in the order of
magnitude of eigenvalues. The eigenfunction /1 corre-
sponding to the largest eigenvalue k1 is the most typical
structure of the member of the snapshots {vn} and the
eigenfunction /2 with the next largest eigenvalue k2 is the
next typical structure, and so forth. These empirical eigen-
functions {/n} can represent the system in the most effi-
cient way, and when employed as the basis functions of a
Galerkin method the system can be represented with the
minimum degree of freedom [17,18].

3. The system and governing equations

We consider a simple electrolyte that dissociates into
two equally charged ions of valence z and �z. The electric
potential in the electric double layer, induced by these ions,
is governed by the Poisson–Boltzmann equation [4].

The following dimensionless variables are defined:

x� ¼ x

L
; w� ¼ w

f0

; v� ¼ v

U
; p� ¼ p

qfU
2
;

t� ¼ t
L=U

; /� ¼ /
f0

;

x ¼ 1

j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pn0e2z2

e0ekBT

s
; a ¼ ezf0

kBT
; b ¼ ðwLÞ2

a
¼ L28pn0ez

e0ef0

;

d ¼ zen0f0

qf U
2
; Re ¼ qLU

l
;

ð3Þ
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Fig. 1. Boundary conditions for the electroosmotic flow and the grid system (80 � 50) adopted in the numerical solution.
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where w is the electric potential induced by ions, / is the
external potential, n0 is the bulk ionic concentration, e is
elementary charge, e0 is the permittivity of vacuum, e
is the dielectric constant, kB is the Boltzmann constant, T

is temperature, L is the width of channel, f0 is the zeta po-
tential at a reference position, U is the characteristic veloc-
ity, j is the Debye length and Re is the Reynolds number.
The surface potential is assumed to be the same as the zeta
potential [19]. Then governing equations of the electroos-
motic flow may be written using these dimensionless vari-
ables as follows:

ov�

ot�
þ v� � r�v� ¼ �r�p� þ 1

Re
r�2v� þ 2d sinhðaw�Þr�/�;

ð4Þ
r � v� ¼ 0; ð5Þ
r�2w� ¼ b sinhðaw�Þ: ð6Þ

From now on we use Eqs. (4)–(6) as the set of governing
equations after deleting the asterisks for the sake of brevity.
The relevant boundary conditions for these equations are
specified in Fig. 1 for the case of a two-dimensional channel
with nonuniform cross-sectional area. The governing equa-
tions (4) and (5) are solved using the SIMPLE algorithm
[20–23] after transforming the physical domain (x,y) into
a square computational domain (X,Y). The numerical
solution of Eq. (6) requires the Newton–Raphson iteration.
The grid system employed in the numerical solution is de-
picted also in Fig. 1. The grids are massively clustered near
the channel walls to resolve the thin electric double layer.
The number of grids in the vertical direction is 50, and a
further increase of grids does not change the numerical
results.
4. The Karhunen–Loève Galerkin procedure for the

electroosmotic flows

The Karhunen–Loève Galerkin (KLG) procedure con-
sists of the following three basic steps: preparation of var-
ious electric potential fields and velocity fields called the
snapshots, extraction of empirical eigenfunctions from
these fields, construction of the reduced-order model using
empirical eigenfunctions [5,6]. However, the application of
KLG procedure to the electroosmotic flow is not easy due
to the steep gradient of the electric potential near the chan-
nel walls. Usually, the KLG procedure yields accurate
results for smooth fields. On the contrary, the extraction
of empirical eigenfunctions from fields with rapid spatial
variation, such as shock waves, is not easy and the accu-
racy of the KLG procedure for such systems is not satisfac-
tory. The w field can be converted to a smooth field as
follows. The electric potential field, governed by Eq. (6),
varies rapidly from w = f (zeta potential value) at the wall
to w = 0 at the outer edge of the electric double layer whose
thickness is determined by the Debye length j defined in
Eq. (3). The Debye length j shrinks down as the bulk ionic
concentration n0 increases, which is equivalent to the
increased values of the dimensionless groups a and b
defined in Eq. (3). Typical parameter values for electroos-
motic flows in microchannels are as follows:

e ¼ 1:602� 10�19 C; z ¼ 1; f0 ¼ 100 mV;

kB ¼ 1:381� 10�23 J=K; T ¼ 298 K; L ¼ 10�4 m;

e ¼ 78:5; e0 ¼ 8:85� 10�12 C2=N m2;

n0 ¼ 10�6 mol=l; Re ¼ 0:1:

ð7Þ

For the above parameter values, we find

a ¼ 3:89; b ¼ 3:593� 105; d ¼ 2:85� 10�5a2b ð8Þ

and the Debye length j, which is given by Lffiffiffiffi
ab
p , is less than

one ten-thousandth of the channel width. The electric
potential variation is thus mostly one dimensional in the
normal direction and the steamwise variation is not so
much significant. Exploiting this, we decompose the electric
potential field w into the following two parts:

w ¼ wh þ p; ð9Þ

where p is determined by the one-dimensional Poisson–
Boltzmann equation.

o
2p

og2
¼ b sinhðapÞ; ð10Þ

where g is the scaled normal distance from the wall. The
relevant boundary conditions for p are

g ¼ 0; p ¼ f; g ¼ 1; p ¼ 0; ð11Þ

where f is the dimensionless zeta potential normalized with
respect to f0. The above function p approximates the nor-
mal variation of w and the deviation from the exact solu-
tion is given by the perturbation function wh, which is
small and has smooth variation for most values of a and
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Fig. 2. Boundary conditions for the masking functions ha, hb and hc.

bMb1 b2 b3

0

1

bp

xMx1 x2 x3 x4
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b. The exact solution of Eqs. (10) and (11) is derived in
Hunter [19] and reproduced below.

pðX ; gÞ ¼ 2

a
ln

1þ e�
ffiffiffiffi
ab
p

g tanh a
4
f

� �
1� e�

ffiffiffiffi
ab
p

g tanh a
4
f

� �
" #

: ð12Þ

This function approaches to zero rapidly as g increases for
practical range of a and b. For the later convenience, we
call p the boundary function. Substituting Eq. (9) into
Eq. (6) and expanding eawh

and e�awh
up to the first order

in awh using the Taylor series, Eq. (6) becomes the follow-
ing linear equation for the perturbation function wh.

r2wh ¼ ab
2
½eap þ e�ap�wh þ b

2
½eap � e�ap� � r2p: ð13Þ

Once p is obtained using Eq. (12), for given values of a, b
and f, Eq. (13) is solved very easily without the necessity of
Newton–Raphson iteration since it is a linear equation for
a small and smooth field wh. Extraction of empirical eigen-
functions for wh is also easy since wh has a smooth spatial
variation. Another important fact to be the mentioned is
that there is no exponential dependance on wh in Eq. (13)
contrary to the w field in Eq. (6). If we are to solve Eq.
(6) for w using a Galerkin method, the w field must be
reconstructed from the basis functions to perform the
Galerkin projection of the exponential term. This will delay
the speed of numerical computation significantly. On the
contrary, the numerical solution of Eq. (13) using a Galer-
kin method does not require the reconstruction of wh once
the boundary function p has been evaluated.

Now we proceed to the steps of KLG for the electroos-
motic flows in microchannels. The final objective is to
derive a reduced-order model that simulates the eletroos-
motic flows in a microchannel with arbitrary distribution
of f at the upper wall. Moreover the reduced-order model
is to be constructed such that the reconstruction of w or v is
never required even though the f distribution varies. This is
one of the most important requirements of efficient
reduced-order model, since the reduced-order model must
be solved repeatedly for various values of f when perform-
ing parameter estimation needed in real-time control.

4.1. The KLG procedure for the boundary function p

Although the boundary function p can be evaluated eas-
ily using Eq. (12) for a given set of (a,b,f), it is necessary to
extract empirical eigenfunctions for p, eap and e�ap to avoid
the reevaluation of the inner product integrals in the KLG
procedure. For this propose, we introduce the so-called
masking functions ha(x,y), hb(x,y) and hc(x,y) governed by

r2ha ¼ 0; r2hb ¼ 0; r2hc ¼ 0: ð14Þ

The boundary conditions for ha, hb and hc are shown in
Fig. 2. The boundary conditions for ha are such that
ha = 1.0 at the upper boundary and ha is identically zero
for points whose distance from the upper boundary is long-
er than ‘, which is arbitrary but a reasonable choice is the
Debye length. The masking function hb has similar bound-
ary conditions, the only difference being hb = 1.0 at the
lower boundary. The value of hc is identically 1 outside
the electric double layer (EDL), and has values less than
one inside the EDL and becomes zero at the walls. Then
the reference fields for p, eap, e�ap, which are needed to
make the snapshots homogeneous [5,6], are defined by

pr ¼ ftha þ fbhb; eapr ¼ eaft
ha þ eafb

hb þ hc;

e�apr ¼ e�aft
ha þ e�afb

hb þ hc; ð15Þ

where ft and fb are the zeta potential at the upper and low-
er walls as shown in Fig. 1. These reference fields pr, eapr

and e�apr
have the same boundary values as p, eap and e�ap,

respectively. The variation of the zeta potential in the
streamwise direction can be taken care of by introducing
a set of linear basis functions depicted in Fig. 3. The linear
basis function bp(X) is defined such that biðX pÞ ¼ dpi

and
resembles a hat function. Then

ft ¼
XMx

p¼1

ft
pbxðX Þ; eaft ’

XMx

p¼1

eaft
p bpðX Þ;

e�aft ’
XMx

p¼1

e�aft
p bpðX Þ ð16Þ
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eigenfunctions.

180 H.M. Park et al. / International Journal of Heat and Mass Transfer 51 (2008) 176–185
and the reference fields are represented by

pr ¼
XMx

p¼1

ft
phabpðX Þ þ

XMx

p¼1

fb
phbbpðX Þ; ð17Þ

eapr ¼
XMx

p¼1

eaft
p habpðX Þ þ

XMx

p¼1

eafb
p hbbpðX Þ þ hc; ð18Þ

e�apr ¼
XMx

p¼1

e�aft
p habpðX Þ þ

XMx

p¼1

e�afb
p hbbpðX Þ þ hc; ð19Þ

where Mx is the number of linear basis functions employed,
which is the same as the grid numbers in the streamwise
direction. To prepare snapshots for the boundary function
p that cover arbitrary profile of the zeta potential at the
upper wall, we evaluate p using Eq. (12) for f = 0 except
at one grid point at the upper wall where f = 0.5 or 1.0
or 1.5. We repeat this procedure for every grid points of
the upper wall, when a = 3.89 and b = 3.593 � 105. Then
the relevant homogeneous snapshots are given by

p̂ ¼ p� pr; êap ¼ eap � eapr
; ê�ap ¼ e�ap � e�apr

: ð20Þ

The Karhunen–Loève decomposition [5] is applied to these
homogenous snapshots p̂; êap, and ê�ap to find the corre-
sponding empirical eigenfunctions {um}, {h2m}, and
{h1m}, respectively. Using these sets of empirical eigenfunc-
tions p, eap, and e�ap may be represented as

p ¼ pr þ
XL

m¼1

dmum; eap ¼ eapr þ
XL

m¼1

cmh2
m;

e�ap ¼ e�apr þ
XL

m¼1

bmh1
m: ð21Þ
4.2. The KLG procedure for the electric potential w

The snapshots for the electric potential w are obtained in
a similar way. Namely, we solve Eq. (6) for f = 0 except at
one grid point at the upper wall where f = 0.5 or 1.0 or 1.5.
We repeat this procedure for every grid point of the upper
wall, when a = 3.89 and b = 3.593 � 105. The homoge-
neous snapshots wh are obtained by Eq. (9). Applying the
Karhunen–Loève decomposition to the snapshots {wh},
the empirical eigenfunctions {Hm} are obtained. Then we
may represent wh as

wh ¼
XN

m¼1

emHm; ð22Þ

where N is the number of empirical eigenfunctions em-
ployed. We may confirm the accuracy of these empirical
eigenfunctions {um}, fh2

mg, fh
1
mg, and {Hm} by comparing

p, eap and e�ap obtained by Eq. (21) with those obtained
by Eq. (12) and w from Eq. (22) with that from Eq. (6),
for an arbitrary profile of f shown in Fig. 4a. The recon-
struction error is defined for a field / as
erec �
k/rec � /extkL2

k/extkL2

; ð23Þ

where /ext is the field obtained by Eq. (12) or (6) and /rec is
the corresponding field obtained by Eq. (21) or (22).
Fig. 4b shows the reconstruction errors of p, eap, e�ap

and w with respect to the number of corresponding eigen-
functions. It is show that sufficient accuracy is attained if
L is larger than 150 and N is larger than 70.

Substituting Eq. (22) into Eq. (13) and applying the
Galerkin principle which enforces the residual to be
orthogonal to each of the basis functions Hm, Eq. (13) is
converted to the following algebraic equations for em:

�
XN

m¼1

em

Z
X
ðr2HmÞHP dXþ

XN

m¼1

em
ab
2

Z
½eap þ e�ap�HmHP dX

¼ � b
2

Z
½eap � e�ap�HP dXþ

Z
X
ðr2pÞHp dX

ðP ¼ 1; 2; . . . ;NÞ: ð24Þ

Substituting Eqs. (17)–(19) into Eq. (24), the final form of
the reduced-order model for wh is derived.
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XN

m¼1

Cw
pmem ¼ Dw

p ðp ¼ 1; 2; . . . ;NÞ; ð25Þ

where Cw
pm and Dw

p depend upon a, b, ft
‘ and fb

‘ ð‘ ¼ 1;
2; . . . ;MxÞ

Cw
pm � N 1

pm þ
ab
2

XMx

‘¼1

ðeaft
‘ þ e�aft

‘ÞN 2;‘
pm

þ ab
2

XMx

‘¼1

ðeafb
‘ þ e�afb

‘ ÞN 3;‘
pm þ

ab
2

N 4
pm þ

ab
2

XL

s¼1

CsH 1
pms

þ ab
2

XL

s¼1

bsH 2
pms; ð26Þ

Dw
p � �

b
2

XMx

‘¼1

ðeaft
‘ � e�aft

‘ÞM1;‘
p �

b
2

XMx

‘¼1

ðeafb
‘ � e�afb

‘ ÞM2;‘
p

� b
2

XL

s¼1

CsN 7
ps þ

b
2

XL

s¼1

bsN 8
ps þ

XL

s¼1

dsN 9
ps

þ
XMx

‘¼1

ft
‘M

3;‘
p þ

XMx

‘¼1

fb
‘M

4;‘
p : ð27Þ

The matrix coefficients in Eqs. (26) and (27) are defined by

N 1
pm ¼ �

Z
X
ðr2HmÞHp dX; N 2;‘

pm ¼
Z

X
hab̂‘ðxÞHmHp dX;

N 3;‘
pm ¼

Z
X

hbb̂‘ðxÞHmHp dX; N 4
pm ¼

Z
X

2hcHmHp dX;

H 1
pms ¼

Z
X

h2sHmHp dX; H 2
pms ¼

Z
X

h1sHmHp dX;
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Z
X
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Eq. (25) is a set of linear algebraic equations whose solu-
tion {em} can be obtained by a simple matrix inversion.
The novelty of Eqs. (25)–(27) is the fact that it is not nec-
essary to reevaluate the integrals defined in Eq. (28), which
arise from the inner products of the Galerkin procedure,
when a, b and f vary. If we had applied the KLG procedure
to Eq. (6), the integrals of the inner product would have to
be recalculated after constructing w from the correspond-
ing empirical eigenfunctions whenever a, b and f change.
Fig. 5 shows the comparison of the w fields from the
numerical solution of Eq. (6) with that from the reduced-
order model (25)–(27) at selected locations for an arbitrary
profile of f when L = 150 and N = 70. It is shown that the
two results coincide almost exactly. Further increase of the
number of empirical eigenfunctions (L and N) did not im-
prove the accuracy.
4.3. The KLG procedure for the velocity field

The procedure for the preparation of velocity snapshots
depends on the objective of the reduced-order model. In
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the present investigation, it is intended to simulate the elec-
troosmotic flows when the external potential / varies time
periodically. The external potential / is obtained as

/ ¼ /raLe cos xt; ð29Þ

where Le is the length of the channel, a = 100 and x = p/
100. It is assumed that / and /r are governed by the La-
place equation
10th eigenfunction

5th eigenfunction

1st eigenfunction

Fig. 6. Dominant empirical eigenfunctions for the velocity field, /1, /5

and /10.
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r2/ ¼ 0; r2/r ¼ 0: ð30Þ
The boundary conditions for / and /r are such that / = 0
and /r = 0 at the inlet, / = acosxt and /r = 1 at the outlet
and the normal derivatives of / and /r are zero at the wall.
The velocity snapshots are obtained by solving Eqs. (4)–(6)
with f = 1 except at one grid point at the upper wall where
f = 0.5 or 1.0 or 1.5. From the resulting transient velocity
fields we take 20 velocity snapshots. This procedure is
repeated for every grid point of the upper wall. Applying
the Karhunen–Loève decomposition to these velocity
snapshots, the velocity empirical eigenfunctions f/mg ¼
fð/x

m;/
y
mÞg are obtained. Fig. 6 shows the first, the fifth

and the 10th velocity eigenfunction. Then the velocity field
can be represented by

v ¼
XM

m¼1

am/m: ð31Þ
Substituting Eq. (31) into Eq. (4) and applying the Galer-
kin principle which requires the orthogonality of the resid-
ual to each of /m, one can derive a reduced-order model for
the flow field. To remove the exponential function of w in
Eq. (4), which causes repeated evaluation of inner product
integral and reconstruction of w using empirical eigenfunc-
tions whenever a, b or f varies, the following relation is
exploited:

sinhðawÞ ¼ 1

b
r2w ¼ 1

b
ðr2pþr2whÞ; ð32Þ
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where p and wh are to be represented by the relevant empir-
ical eigenfunctions (cf. Eqs. (21) and (22)). The resulting re-
duced-order model for the flow field is

MP
daP

dt
þ
XM

n¼1

XM

‘¼1

QPn‘ana‘

¼ � 1

Re

XM

n¼1

H Pnan þ
2d
b
ðaLe cos xtÞDv

p ðP ¼ 1; 2; . . . ;NÞ;

ð33Þ

where

Dv
p �

XL

s¼1

dsN 11
Ps þ

XN

m¼1

emN 12
Pm þ

XMx

‘¼1

ft
‘M

5‘
P þ

XMx

‘¼1

fb
‘M

6‘
P : ð34Þ

The matrix coefficients in Eqs. (33) and (34) are defined
by

MP ¼
Z

X
/ðPÞ � /ðPÞ dX; QPn‘ ¼

Z
X

/ðP Þ � ð/ðnÞ � r/ð‘ÞÞdX;

H Pn ¼ �
Z

X
/ðPÞ � r2/ðnÞ dX; N 11

Ps ¼
Z

X
ð/ðP Þ � r/rÞðr2usÞdX;

N 12
Pm ¼

Z
X
ð/ðPÞ � r/rÞðr2HmÞdX;

M5;‘
P ¼

Z
X
ð/ðP Þ � r/rÞr2ðhab̂‘ÞdX;

M6;‘
P ¼

Z
X
ð/ðP Þ � r/rÞr2ðhbb̂‘ÞdX:

ð35Þ

The pressure gradient term in Eq. (4) is eliminated
though integration by parts since the basis functions
employed in the Galerkin procedure {/m} are solenoidal.

Fig. 7 shows the accuracy of the reduced-order model,
Eqs. (25) and (33) for the zeta potential profile shown in
the same figure when M = 15. It is shows that the
reduced-order model predicts the flow field accurately. Fur-
ther increase of the number of velocity eigenfunctions
employed in the reduced-order model, M, does not improve
the accuracy appreciably. The reduced-order model con-
structed in this way can be employed to simulate the electro-
osmotic flow with arbitrary zeta potential profile at the
upper wall.

5. Estimation of inhomogeneous zeta potential

While operating various lab-chips unwanted adhesion of
DNA or protein to the microchannel wall causes nonuni-
form zeta potential along the channel wall, resulting in
modification of flow pattern or flow rate. To revert to the
prescribed flow pattern or flow rate, it is necessary to adjust
the external electric potential. The implementation of this
kind of control scheme requires the estimation of zeta
potential profile modified by the adhesion of protein. In
the present section, it shall be shown that the zeta potential
profile can be estimated based on the velocity measure-
ments accurately as well as efficiently if the reduced-order
model developed in the previous sections is employed. This
study may be regarded as a first step toward the application
of modern control theory to various microfluidic devices.
The velocity distribution in the microchannel may be mea-
sured using microparticle image velocity (lPIV) technique.
Recent advances in microPIV allow measurements of
velocity in the microchannel for a time resolution of
500 ls and a spatial resolution of 2.0 lm [24].

The following performance function is defined for the
identification of f(x) using the velocity measurements.

J ¼ 1

2

Z tf

t0

XM0

m¼1

ðvðfÞ � v�Þ2m dt ¼ 1

2

Z tf

t0

XM0

m¼1

XM

n¼1

anðfÞ/n � v�

" #2

m

;

ð36Þ

where t0 and tf indicate the start and end of the measure-
ment period, vm(f) is the model predicted velocity at the
mth measurement location when f(x) is adopted as the zeta
potential profile, vm� is the observed velocity at the same
measurement location and M0 is the total number of mea-
surement locations. The f(x) that makes J zero is the correct
profile of the zeta potential. Therefore, the estimation prob-
lem is tantamount to the minimization of J with respect to
f(x) or with respect to ft

p ðp ¼ 1; 2; . . . ;MxÞ (Eq. (16)) [13].
A powerful method of solving this kind of minimization
problem is the conjugate gradient method [14]. The varia-
tion of J with respect to ft

p is given by

oJ
oft

p

¼
XM0

m¼1

Z tf

t0

XM

n¼1

anðfÞ/n � v�

" #
m

XM

r¼1

oar

oft
p

/r

" #
m

dt

ðp ¼ 1; 2; . . . ;MxÞ: ð37Þ

The governing equations for the sensitivity functions, oar
oft

p
,

are obtained by differentiating Eqs. (33), (34) and Eqs.
(25)–(27) with respect to ft

p. Define the vectors ft ¼
ðft

1; f
t
2; . . . ; ft

Mx
ÞT and a ¼ ða1; a2; . . . ; aMÞT, and let Eq. (33)

be denoted by F = 0 and Eq. (25) by G = 0, respectively.
The governing equations for oa

oft are represented by

oF

oft ¼ 0;
oG

oft ¼ 0: ð38Þ

In Eq. (38) the oem
oft calculated from the solution of oG

oft ¼ 0 is
used to solve oF

oft ¼ 0 for oa
oft. The basic steps in the conjugate

gradient method for the minimization of the performance
function J may be described as follows [14]:

1. Assume ft(0) and calculate a and oa
oft using governing

equations, (33), (34) and (25)–(27), and sensitivity equa-
tions (38).

2. Determine the conjugate direction at the ith iteration
step d(i) using

dðiÞ ¼ � oJ

oftðiÞ þ udði�1Þ ði P 1Þ; ð39Þ
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where

u �

PMx
p¼1

oJ
oft

p

� �ðiÞ� �2

PMx
p¼1

oJ
oft

p

� �ði�1Þ
� �2

ði P 1Þ; u � 0 ði ¼ 0Þ: ð40Þ

3. Determine the optimal step length q(i):

qðiÞ ¼ argminJðftðiÞ þ qðiÞdðiÞÞ: ð41Þ
4. Set

ftðiþ1Þ ¼ ftðiÞ þ qðiÞdðiÞ: ð42Þ
5. Repeat the above procedure until converged value of ft

is obtained.

The estimated zeta potential along the upper wall is then
given by

ftðX Þ ¼
XMx

p¼1

ft
pbpðX Þ: ð43Þ

In the conjugate gradient iteration, we have to solve the
governing equations repeatedly. Adoption of the reduced-
order model instead of the original partial differential equa-
tions greatly reduces the computation time.
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shape a using the reduced-order model.
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Fig. 8b. Estimation of inhomogeneous zeta potential of shape b.
Fig. 8a and b shows the results of estimation of inhomo-
geneous zeta potential using the reduced-order model for
two different arbitrary profiles. In both cases, the number
of measurement locations is 11, each of which is located
17.1 lm away from the wall while the width of the channel
is 329 lm. For the case of Fig. 8a, when the initially
assumed f(x) is constant (1.0), the conjugate gradient
method yields the converged profile after 51 iterations with
the estimation error of 1.96% when there is no measure-
ment error and estimation error of 2.21% when the mea-
surement error is 5%. Similarly, for the case of Fig. 8b,
the estimation error is 1.47% when the there is no measure-
ment error and the estimation error is 1.72% when the mea-
surement error is 5%. In both cases the conjugate gradient
method employing the reduced-order model predicts accu-
rate results, and the estimation error increases with respect
to the measurement error.
6. Conclusion

The KLG procedure is employed to reduce the set of
partial differential equations governing the electric poten-
tial and velocity to a small number of ordinary differential
equations. The resulting set of ordinary differential equa-
tions, when compared with the original governing equa-
tions composed of the Poisson–Boltzmann equation and
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the Navier–Stokes equation, could simulate the system
almost exactly for arbitrary profiles of zeta potential. Using
the reduced-order model, it is attempted to estimate inho-
mogeneous zeta potential at the upper wall of the micro-
channel using velocity measurements. The conjugate
gradient method employing the reduced-order model is
shown to yield accurate estimation even with noisy velocity
measurements.

An important as well as interesting consideration in the
KLG procedure is the comparison of the CPU time
required for the KLG procedure with that for the finite dif-
ference method. Unavoidable amount of CPU time is con-
sumed to produce snapshots in the KLG procedure, which
must be done by repeated solution of governing partial dif-
ferential equations for various profiles of zeta potential.
Once these snapshots and the resulting empirical eigenfunc-
tions have been secured, the numerical solution of the
reduced-order model, Eqs. (25) and (33), for one period
of the external potential oscillation (cf. Eq. (29)) consumes
only 3.43 s when using the SUN Blade workstation, which
should be compared with 919.58 s required in the finite dif-
ference solution of the governing partial differential equa-
tions employing (80 � 50) grid system. The reduction in
the CPU time is of the order 102 in the two-dimensional
system as investigated in the present work. The reduction
in the CPU time can be estimated a priori since it depends
on the number of equations or the number of grid points
employed in the numerical analysis. The total number of
ordinary differential equations in the reduced-order model
is 85, 70 for wh field and 15 for v field, while the number of
grid points in the finite difference method is 4000 for each
of w, vx and vy, a total of 12,000, thus the ratio being a
100th. Therefore, it is expected that the reduction in CPU
time for the three-dimensional cases would be of the order
of 103, since the number of ordinary differential equations
of the reduced-order model for the three-dimensional sys-
tem is almost the same as that of the corresponding two-
dimensional system while the number of grids for the
three-dimensional system is at least tenfold larger than that
for the two-dimensional system. It is hoped that this drastic
reduction of CPU time gained by employing the KLG pro-
cedure would facilitate the real-time estimation and control
of various microfluidic systems.
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